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a) Principle of equal-channel angular 

pressing 

 b) Principle of torsion 

straining 

Analysis of true strains: 

a) Equal-channel angular pressing: b) Torsion straining 

ε = 
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N − number of cycles 

r−  radius of specimen 

d− thickness of specimen 

 

n− number of turns 

 



ECAP PROCESSING 
 

 
 
 

VIEW OF TYPICAL BILLETS PRODUCES BY ECAP 

(ROUTE Bc) 

 

 

 

Route A

Φ Φ

Route B C

90 °Φ Φ

Route B A

90 °Φ Φ

Route B c

180 °Φ Φ



 

Billets of commercially pure tungsten after ECA pressing in matrix with angle of 
channels intersection equal to 90o. 

 

Billets out of CP tungsten; (a) before, (b) afer ECA pressing by Route C, 8 passes, using the 

modification (see the text for details) of SPD processing. 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 
 
Appearance of the nanocrystalline Ni3Al before and after tensile 

tests: as-machined and after pulling at 650оС, 1×10-3s-1, 390% 
elongation (the crossmark on the gauge denotes the region from where 
the TEM/HREM specimen was prepared) and at 725оС, 1×10-3s-1,  
560% elongation. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fatigue life 
 

Low-cycle fatigue (LCF) and high-cycle fatigue (HCF) regimes are 
conventionally distinguished in accord with applied strain amplitudes. In a 
strain-based approach to fatigue life37,38) it is naturally to relate the total strain 
range ∆εt to the sum of elastic ∆εel and plastic ∆εpl components: 

∆εt = ∆εel + ∆εpl        (1)  
 

To describe HCF and LCF two following empiric formula link the number 
of cycles to failure Nf with strain ranges ∆εel and ∆εpl through Basquin (2) and 
Coffin-Manson (3) law correspondingly:6,37,38 
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where 2Nf represents the number of stress reversals, E is the Young's modulus, 
σf and εf are the fatigue strength and ductility coefficients and b and c are known 
as fatigue strength and ductility exponents, respectively. Using the Hook's law 
the Basquin relation can be rewritten as 
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and the stress amplitude ∆σ becomes explicitly connected with NF accounting for 
the standard Wholer S-N curve (stress vs number cycles to failure). Combining 
(2) and (3) through (1) one obtains for the total strain amplitude ∆ε1/2. 
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Fatigue exponents c and b typically take values c = − 0.5 to − 0.6 and b = − 

0.05 to − 0.12.37,38) εF and σf correspond often to monotonic fracture strain and 
stress, respectively, with a fairly good accuracy. 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Schematic illustration of enhanced high-cycle fatigue (HCF) 
life and reduced low-cycle fatigue (LCF) life typical of 
conventional UFG materials due to increased fatigue strength 
coefficient '

fσ and reduced fatigue ductility coefficient '
fε , 

respectively. Note also the reduced transition fatigue life Nt. E: 
Young’s modulus. 
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Figure 2 Transmission electron micrographs showing the evolution of the Cu microstructure. Panels 

a and b show the samples used to obtain the curves D and E in Fig. 1, respectively. After annealing 

at 180 ºC for 3 min (a), recovery has occurred, and the dislocation density is much reduced. The 

vast majority of the grains are in the nanocrystalline/ultrafine range, with some recrystallized 

regions. Heat-treating at 200 ºC for 3 min led to full recrystallization followed by secondary 

recrystallization (b). 

 

 

 

 

 

 



 
 

HIGH TENSILE DUCTILITY IN A NANOSTRUCTURED 
METAL 

Yinmin Wang, Mingwei Chen, Fenghua Zhou & En Ma 
Johns Hopkins University, USA 

 

Fi

gure 1 Engineering stress–strain curves for pure Cu. Curve A, annealed, coarse-grained Cu; B, room 

temperature rolling to 95% cold work (CW); C, liquid-nitrogen-temperature rolling to 93% CW; D, 

93% CW + 180 ºC, 3 min.; and E, 93% CW + 200 ºC, 3 min. Note the coexisting high strength and 

large uniform plastic strain as well as large overall percentage elongation to failure for curve E. 
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THE MICROSTRUCTURE OF HPT-PRODUCED CP Ti 
 

 
 

 
 

Typical TEM bright field (with SAED as an insert) (a) and dark field 
(b) micrographs and HREM image (c) of as-processed CP Ti. 

 

 

 



 
 
 
 
 

 
 
 

Fracture surfaces of the samples deformed at room temperature: (a) after HPT; 
(b) after HPT and annealing at 250 ºC for 10 min. 

 
 

 

 
 
 
 
 
 
 
 
 
A view of the gage surface after deformation at room temperature. 

 
 
 

R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, to be published 

 

 

 

 

 



 
 

DEFORMATION TWINNING AND STACKING FAULTS 
IN NANOSTRUCTURED COPPER 

 
 
 

 
 

A typical image of a five-fold twin. The twin boundaries are indicated by black 

arrows and each twin domain is marked with 1 to 5, respectively. The twin center is 

highlighted with a black full circle. 

 

 

 

 

 

 



 
 

(a) A typical [011] HRTEM image of an elongated crystallite with width varying 
from smaller than 10 nm to about 20 nm. Twins are seen in this crystallite with 
most of the twin planes are (111 )  (indicated by white arrows) and one twin plane 
is (11 1)  (indicated by a black arrow). Micro-twins and stacking faults are seen in 
three areas marked A, B, and C, respectively; (b) an enlarged image of area B in 
(a). The upper part of the image shows only two twin domains I and II, while the 
lower part of II have a lot of micro-twins and stacking faults with one end of the 
micro-twins/stacking faults stops within the crystallite. 
 

 



 
 
 

(a) A typical HRTEM image of an equiaxed copper grain without crystalline defect in the grain and 

(b) a typical HRTEM image of an equiaxed grain with micro-twins. The twin boundaries are 

indicated by arrows. 



 

 
 
 

Al-3%Mg, d=100 nm 

Z. Horita et al., 1996 
 

 

 



        
      

                  

 
 
 
 
 
 
 
 
 

 
R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, Scripta Mat., in press 

 

 

 

 

 

True stress-strain curves of CP Ti after 
HPT and annealing. 

Dependences of ultimate st
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